91 research outputs found

    Re-description of Strandesia sanoamuangae Savatenalinton & Martens, 2010 and description of a new species of Strandesia (Crustacea, Ostracoda) from Grande Terre, New Caledonia

    Get PDF
    The New Caledonian Archipelago is a hot spot for biodiversity and endemism. Whereas popular groups such as birds and plants are well-studied, invertebrate groups such as ostracods remain ill-known. Here, we re-describe Strandesia sanoamuangae Savatenalinton & Martens, 2010, originally described from Thailand (8000 km away from New Caledonia), and describe Strandesia mehesi sp. nov. Both species are known only from females. Material for the present study was collected from diverse aquatic non-marine habitats from Grande Terre, the main island of New Caledonia. Whereas S. sanoamuangae is seemingly easily identifiable, S. mehesi sp. nov. is part of the Strandesia vinceguerrae/vavrai species cluster in the genus, of which the 'older' species (described long ago) often have incomplete and superficial descriptions. Differentiation between the new species and the other members of this species cluster are based on small anatomical details of the valves. The current paper updates the known number of recent freshwater Ostracoda of New Caledonia from 14 to 16 species, although at least five of these species have an uncertain status

    On a new species of the genus Cyprinotus (Crustacea, Ostracoda) from a temporary wetland in New Caledonia (Pacific Ocean), with a reappraisal of the genus

    Get PDF
    The New Caledonia archipelago is known for its high level of endemism in both faunal and floral groups. Thus far, only 12 species of non-marine ostracods have been reported. After three expeditions to the main island of the archipelago (Grande Terre), about four times as many species were found, about half of which are probably new. Here, we describe a new species, Cyprinotus drubea sp. nov., which is characterised mainly by the hyper-developed dorsal hump on the right valve, much larger than in any other known Recent species in this genus. After a literature study of the other presumed species in Cyprinotus Brady, 1886, we retain seven Recent species in the genus, including the present new species. Cyprinotus crenatus (Turner, 1893), C. dentatus (Sharpe, 1910), C. flavescens Brady, 1898, C. inconstans Furtos, 1936, C. new mexicoensis Ferguson, 1967, C. ohanopecoshensis Ferguson, 1966, C. pellucidus (Sharpe, 1897), C. scytodus (Dobbin, 1941) and C. sulphurous Blake, 1931 are here all referred to the genus Heterocypris s. lat. Claus, 1892. Cyprinotus unispinifera Furtos, 1936 is assigned to the genus Cypricercus Sars, 1895. Cyprinotus tenuis Henry, 1923, C. fuscus Henry, 1919 and C. carinatus (King, 1855) are here classified as doubtful species. A checklist of the 14 non-marine ostracods, now including Cyprinotus drubea sp. nov. and Cypris granulata (Daday, 1910), thus far reported from New Caledonia, is provided. Herpetocypris caledonica Mehes, 1939 and H. caledonica var. minor Mehes, 1939 are synonymised with Candonocypris novaezelandiae (Baird, 1843)

    Four new genera and five new species of 'Heterocypris' from Western Australia (Crustacea, Ostracoda, Cyprinotinae)

    Get PDF
    Five new species in four new genera from Western Australia are described. All species have valve characters that are reminiscent of the genus Heterocypris Claus, 1892 and also have similar valve outlines, with highly arched valves. However, all species have a hemipenis morphology that is totally different from the typical form in Heterocypris. In Patcypris gen. nov. (with type species P outback gen. et sp. nov.), the lateral lobe is large and shaped as a pickaxe, while the medial lobe is divided into two distal lobes. Trilocypris gen. nov. (with type species T. horwitzi gen. et sp. nov.) is characterised by a hemipenis that has three, instead of two, distal lobes. In Bilocypris gen. nov. (with type species B. fortescuensis gen. et sp. nov. and a second species, B. mandoraensis gen. et sp. nov.), the lateral lobe of the hemipenis is spatulate, rather than boot-shaped, and the medial lobe is bilobed. Bilicypris gen. nov. (with type species B. davisae gen. et sp. nov.) has a large and sub-rectangular lateral lobe and a pointed medial lobe. We discuss the taxonomic value of the traditional and new morphological characters and speculate that the diversity of this cluster of genera and species may be greater than currently known

    Four new genera and five new species of 'Heterocypris' from Western Australia (Crustacea, Ostracoda, Cyprinotinae)

    Get PDF
    Five new species in four new genera from Western Australia are described. All species have valve characters that are reminiscent of the genus Heterocypris Claus, 1892 and also have similar valve outlines, with highly arched valves. However, all species have a hemipenis morphology that is totally different from the typical form in Heterocypris. In Patcypris gen. nov. (with type species P outback gen. et sp. nov.), the lateral lobe is large and shaped as a pickaxe, while the medial lobe is divided into two distal lobes. Trilocypris gen. nov. (with type species T. horwitzi gen. et sp. nov.) is characterised by a hemipenis that has three, instead of two, distal lobes. In Bilocypris gen. nov. (with type species B. fortescuensis gen. et sp. nov. and a second species, B. mandoraensis gen. et sp. nov.), the lateral lobe of the hemipenis is spatulate, rather than boot-shaped, and the medial lobe is bilobed. Bilicypris gen. nov. (with type species B. davisae gen. et sp. nov.) has a large and sub-rectangular lateral lobe and a pointed medial lobe. We discuss the taxonomic value of the traditional and new morphological characters and speculate that the diversity of this cluster of genera and species may be greater than currently known

    Hurdles in investigating UVB damage in the putative ancient asexual Darwinula stevensoni (Ostracoda, Crustacea)

    Get PDF
    Ostracoda or mussel-shrimps are small, bivalved Crustacea. Because of their excellent fossil record and their broad variety of reproductive modes, ostracods are of great interest as a model group in ecological and evolutionary research. Here, we investigated damage and repair of one of the most important biological mutagens, namely UVB radiation in the putative ancient asexual ostracod Darwinula stevensoni from Belgium. We applied three different methods: the Polymerase Inhibition (PI) assay, Enzyme-Linked Immuno Sorbent Assay (ELISA) and dot blot. All three techniques were unsuccessful in quantifying UVB damage in D. stevensoni. Previous experiments have revealed that the valves of D. stevensoni provide an average UVB protection of approximate 60%. Thus, UVB damage could be too little to make quantitative experiments work. Additional variation between individual ostracods due to season and age most likely contributed further to the failure of the three used experimental approaches. In a second experiment, we investigated the influence of temperature on survival of D. stevensoni during UVB exposure. The estimated lethal UVB dose at 4°C was with 50 kJ/m2 significantly lower than at room temperature with 130 kJ/m2. This could either indicate adaptation to low temperatures and/or the presence of metabolic processes against UVB damage in D. stevensoni. These results could also explain why the estimated lethal UVB dose of D. stevensoni is similar to that of other non-marine ostracods where valves provide around 80% protection, although the valves of D. stevensoni provide less protection. If such metabolic processes can repair UVB damage fast, they might be an alternative explanation why we could not quantify UVB damage in D. stevensoni

    Exploring requisites and antecedents of continuous innovation.

    Get PDF
    When innovating, an organization needs to be capable of (1) exploring problem definition spaces and (2) exploiting them. The processes in which both activities unfold, display paradoxical characteristics which can be addressed by adopting ambidextrous organizational forms. Analyzing underlying value dynamics indicate that such forms will only be sustainable to the extent that cross-fertilization between both types of activity is achieved. These findings underscore the relevancy of interface management practices directed towards enacting synergies.

    On the Bennelongia nimala and B. triangulata lineages (Crustacea, Ostracoda) in Western Australia, with the description of six new species

    Get PDF
    The ostracod genus Bennelongia De Deckker & McKenzie, 1981 occurs in Australia and New Zealand. We redescribe B. nimala from the Northern Territory and describe six new species from Western Australia belonging to the B. nimala (five species) and B. triangulata sp. nov. (one species) lineages: B. tirigie sp. nov., B. koendersae sp. nov., B. pinderi sp. nov., B. muggon sp. nov., B. shieli sp. nov. and B. triangulata sp. nov. For six of these seven species, we could construct molecular phylogenies and parsimonious networks based on COI sequences. We tested for specific status and for potential cryptic diversity of clades with Birky's 4 theta rule. The analyses support the existence of these six species and the absence of cryptic species in these lineages. Bennelongia triangulata sp. nov. is a common species in the turbid claypans of the Murchison/ Gascoyne region. Bennelongia nimala itself is thus far known only from the Northern Territory. Bennelongia tirigie sp. nov., B. pinderi sp. nov. and B. muggon sp. nov. occur in the Murchison/ Gascoyne region, whereas B. koendersae sp. nov. and B. shieli sp. nov. are described from the Pilbara. With the six new species described here, the genus Bennelongia now comprises 31 nominal species

    A subjective global checklist of the extant non-marine Ostracoda (Crustacea)

    Get PDF
    We present an updated, subjective list of the extant, non-marine ostracod genera and species of the world, with their distributions in the major zoogeographical regions, as well as a list of the genera in their present hierarchical taxonomic positions. The list includes all taxa described and taxonomic alterations made up to I July 2018. Taxonomic changes include 17 new combinations, 5 new names, I emended specific name and 11 new synonymies (1 tribe, 4 genera, 6 species). Taking into account the recognized synonymies, there are presently 2330 subjective species of non-marine ostracods in 270 genera. The most diverse family in non-marine habitats is the Cyprididae, comprising 43.2% of all species, followed by the Candonidae (29.0%), Entocytheridae (9.1%) and the Limnocytheridae (7.0%). An additional 13 families comprise the remaining 11.8% of described species. The Palaearctic zoogeographical region has the greatest number of described species (799), followed by the Afrotropical region with 453 species and the Nearctic region with 439 species. The Australasian and Neotropical regions each have 328 and 333 recorded species, respectively, while the Oriental region has 271. The vast majority of non-marine ostracods (89.8%) are endemic to one zoogeographical region, while only six species are found in six or more regions. We also present an additional list with 'uncertain species', which have neither been redescribed nor re-assessed since 1912, and which are excluded from the main list; a list of taxonomic changes presented in the present paper; a table with the number of species and % per family; and a table with numbers of new species described in the 20-year period between 1998 and 2017 per zoogeographical region. Two figures visualize the total number of species and endemic species per zoogeographical region, and the numbers of new species descriptions per decade for all families and the three largest families since 1770, respectively

    A subjective global checklist of the extant non-marine Ostracoda (Crustacea)

    Get PDF
    We present an updated, subjective list of the extant, non-marine ostracod genera and species of the world, with their distributions in the major zoogeographical regions, as well as a list of the genera in their present hierarchical taxonomic positions. The list includes all taxa described and taxonomic alterations made up to I July 2018. Taxonomic changes include 17 new combinations, 5 new names, I emended specific name and 11 new synonymies (1 tribe, 4 genera, 6 species). Taking into account the recognized synonymies, there are presently 2330 subjective species of non-marine ostracods in 270 genera. The most diverse family in non-marine habitats is the Cyprididae, comprising 43.2% of all species, followed by the Candonidae (29.0%), Entocytheridae (9.1%) and the Limnocytheridae (7.0%). An additional 13 families comprise the remaining 11.8% of described species. The Palaearctic zoogeographical region has the greatest number of described species (799), followed by the Afrotropical region with 453 species and the Nearctic region with 439 species. The Australasian and Neotropical regions each have 328 and 333 recorded species, respectively, while the Oriental region has 271. The vast majority of non-marine ostracods (89.8%) are endemic to one zoogeographical region, while only six species are found in six or more regions. We also present an additional list with 'uncertain species', which have neither been redescribed nor re-assessed since 1912, and which are excluded from the main list; a list of taxonomic changes presented in the present paper; a table with the number of species and % per family; and a table with numbers of new species described in the 20-year period between 1998 and 2017 per zoogeographical region. Two figures visualize the total number of species and endemic species per zoogeographical region, and the numbers of new species descriptions per decade for all families and the three largest families since 1770, respectively

    EJT editorial standard for the semantic enhancement of specimen data in taxonomy literature

    Get PDF
    This paper describes a set of guidelines for the citation of zoological and botanical specimens in the European Journal of Taxonomy. The guidelines stipulate controlled vocabularies and precise formats for presenting the specimens examined within a taxonomic publication, which allow for the rich data associated with the primary research material to be harvested, distributed and interlinked online via international biodiversity data aggregators. Herein we explain how the EJT editorial standard was defined and how this initiative fits into the journal's project to semantically enhance its publications using the Plazi TaxPub DTD extension. By establishing a standardised format for the citation of taxonomic specimens, the journal intends to widen the distribution of and improve accessibility to the data it publishes. Authors who conform to these guidelines will benefit from higher visibility and new ways of visualising their work. In a wider context, we hope that other taxonomy journals will adopt this approach to their publications, adapting their working methods to enable domain-specific text mining to take place. If specimen data can be efficiently cited, harvested and linked to wider resources, we propose that there is also the potential to develop alternative metrics for assessing impact and productivity within the natural science
    • …
    corecore